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Modern planning theories encourage approaches that consider all stakeholders with a variety of dis-
course values to avoid political and manipulative decisions. In the last decade, application of quantitative
approaches such as multi-criteria decision making techniques in land suitability procedures has
increased, which allows handling heterogeneous data. The majority of these applications mainly used
decision-making techniques to rank the priority of predefined management options or planning scenar-
ios. The presented study, however, shows how spatial decision-making can be used not only to rank the
priority of options and performing scenario analysis, but also to provide insight into the spatial extent of
the alternatives. This is particularly helpful in situation where political transitions in regard to urban
planning policies leave local decision-makers with considerable room for discretion. To achieve this,
the study compares the results of two quantitative techniques (analytical hierarchy procedure (AHP)
and Fuzzy AHP) in defining the extent of land-use zones at a large scale urban planning scenario. The pre-
sented approach also adds a new dimension to the comparative analysis of applying these techniques in
urban planning by considering the scale and purpose of the decision-making. The result demonstrates
that in the early stage of the planning process, when identifying development options as a focal point
is required, simplified methods can be sufficient. In this situation, selecting more sophisticated tech-
niques will not necessarily generate different outcomes. However, when planning requires identifying
the spatial extent of the preferred development area, considering the intersection area suggested by both
methods will be ideal.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Urban planning analysis involves the consideration of a number
of factors, including natural system constraints, compatibility with
existing land uses, existing land use policies, and the availability of
community facilities. The suitability techniques analyse the inter-
action between location, development actions, and environmental
elements to classify the units of observation according to their
suitability for a particular use (Collins, Steiner, & Rushman, 2001;
Kalogirou, 2002; Keshavarzi & Heidari, 2010; Malczewski, 2004).
In reality, not all the conflicting objectives due to economic devel-
opment, community or conservation interests are always taken
into consideration, which could lead to political and manipulative
decisions (Albrechts & Denayer, 2001; Hillier, 2002). To avoid this,
planners are encouraged to adjust their ‘tool-kits’ or mindsets to
the changing needs and challenges of democratic society
(Albrechts & Denayer, 2001; Hillier, 2002). Modern planning theo-
ries such as communicative planning and actor-network theory
focus on the fact that effective planning decisions should essen-
tially consider all participants with a variety of discourse types
and values (Hillier, 2002). This encourages approaches for integrat-
ing very heterogeneous data, making them available to the various
stakeholders to allow them to make more informed and less sub-
jective decisions (Greene, Luther, Devillers, & Eddy, 2010).

In the 1960s, the first multi-criteria decision making (MCDM)
techniques emerged to alleviate difficulties in accommodating
diverse opinions and handling large amounts of complex
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information in the decision-making process (Zopounidis &
Doumpos, 2002; Zopounidis & Pardalos, 2010). These capabilities
have encouraged planners to combine MCDM with other planning
tools such as geographical information system (GIS).

Multi-criteria decision making involves a multi-stage process of
(i) defining objectives, (ii) choosing the criteria to measure the
objectives, (iii) specifying alternatives, (iv) assigning weights to
the criteria, and (v) applying the appropriate mathematical algo-
rithm for ranking alternatives. MCDM allows to accommodate
the need for unbiased integration of modern planning objectives
for independent identification and ranking of the most suitable
planning solutions (Ananda & Herath, 2009; Herath & Prato,
2006; Mosadeghi, Tomlinson, Mirfenderesk, & Warnken, 2009).
These spatial MCDM techniques are capable of improving the
transparency and analytic rigour of the land use decisions
(Dunning, Ross, & Merkhofer, 2000; Hajkowicz & Collins, 2006).
Practical applications of such spatial MCDM techniques have
become more widespread in land suitability studies (e.g.
Arciniegas, Janssen, & Omtzigt, 2011; Chang, Parvathinathan, &
Breeden, 2008; Chen, Yu, & Khan, 2010; Greene et al., 2010;
Kordi & Brandt, 2012). Recent study, however, shows application
of MCDM techniques in identifying the extent of future land-use
zones at local scale are rare (Mosadeghi, Warnken, Tomlinson, &
Mirfenderesk, 2013). The majority of previous MCDM applications
are at national, or regional scales and they mainly focus on using
MCDM to rank the priority of predefined management options or
planning scenarios (see e.g. Ananda & Herath, 2003, 2008; Bryan,
Grandgirard, & Ward, 2009; Hajkowicz, 2002, 2008; Hajkowicz
and McDonald, 2006; Kodikara, 2008; Qureshi & Harrison, 2003;
Xevi & Khan, 2005). Spatial MCDM, however, can be used not only
to rank the priority of options and performing scenario analysis,
but also to provide insight into the spatial extent of the alternatives
(Arciniegas et al., 2011). This capability can assist local land use
planners in identifying land-use zones for future urban develop-
ment. It can be particularly useful in situations where planning
instruments do not provide prescriptive guideline for local plan-
ning decisions. Therefore, presented approach here tries to encour-
age local governments to use more systematic approach to assist
planners in integrating all environmental, social, economic, and
political matters through a non-bias procedure. This study also
examines the outcomes differences in applying two different tech-
niques namely the AHP and Fuzzy AHP. As a result, it highlights the
need for planners and decision-makers to make informed decisions
about their choice of MCDM technique.

Several MCDM techniques have been proposed for combining
with GIS analysis [e.g. ELECTRE-TRI in Joerin (2001); Ordered
Weighted Averaging (OWA) in Malczewski (2006); Compromise
programming in Baja, Chapman, and Dragovich (2006); goal pro-
gramming in Janssen, Herwijnen, Stewart, and Aerts (2008); and
analytical hierarchy procedure (AHP)]. The AHP is one of the most
commonly MCDM technique incorporated into GIS-based suitabil-
ity procedures (e.g. Ananda & Herath, 2008; Chang et al., 2008;
Chen et al., 2010; Kordi & Brandt, 2012; Marinoni, 2004; Svoray,
Bar Kutiel, & Bannet, 2005; Thapa & Murayama, 2008).

The popular AHP-based land-use suitability analyses have been
criticized for their need for exact numerical values to express the
strength of stakeholders’ preferences (Chang et al., 2008; Deng,
1999; Kordi & Brandt, 2012; Mikhailov, 2003; Mosadeghi,
Warnken, Tomlinson, & Mirfenderesk, 2013; Wang & Chen,
2008). Such exact pair-wise comparison judgments may be impos-
sible to determine and therefore arbitrary in many practical situa-
tions in urban environments with uncertainties arising from
climate change, global economic crises or immigration policies
and local population growth rates.

Advanced MCDM methods including ELECTRE, PROMETHEE,
MAUT, Fuzzy set theory, and Random set theory provide more
sophisticated algorithms to process uncertain or inaccurate infor-
mation (Figueira, Greco, Roy, & Slowinski, 2010; Lahdelma,
Makkonen, & Salminen, 2009; Zhang & Achari, 2010). The Fuzzy
Set theory techniques are considered the most common techniques
for dealing with imprecise and uncertain problems (Chen, 2005;
Chen, Wood, Linstead, & Maltby, 2011; Dermirel, Demirel, &
Kahraman, 2009; Janssen, Krol, Schielen, & Hoekstra, 2010;
Keshavarzi & Heidari, 2010; Kordi & Brandt, 2012; Sui, 1992;
Mosadeghi, Warnken, Tomlinson, & Mirfenderesk, 2013; Zarghami,
Szidarovszky, & Ardakanian, 2008; Zhang & Achari, 2010). Most of
the empirical studies however have applied Fuzzy techniques with-
out a comparative analysis to investigate whether using more
sophisticated techniques like Fuzzy AHP will truly make a significant
difference compare to conventional AHP. On the other hand, the few
studies that have done comparative analysis in land suitability
applications (e.g. Elaalem, 2013; Elaalem, Comber, & Fisher, 2010;
Ertuğrul & Karakas�oğlu, 2008; Hajkowicz, Young, Wheeler,
MacDonald, & Young, 2000; Kordi & Brandt, 2012; Quadros, Koppe,
Strieder, & Costa, 2006) have mainly focused on arithmetic aspects
such as differences in criteria weights, option rankings, or the effects
of introducing uncertainty into their models. This need for compar-
ative analyses carries an even greater imperative in the context of
applying spatial MCDM methods to real-world urban planning deci-
sions, where transparency and simplicity of the decision-making
model is a key element during consultation with the stakeholders.
Accordingly, the presented research uses a case study to compare
the outcomes of Analytical Hierarchy Process (AHP) and Fuzzy
AHP in urban land use planning for the northeast Gold Coast located
in Queensland on the east coast of Australia. In addition to the
criteria ranking differences and sensitivity analysis, this study com-
pares the spatial extent of the most preferred development locations
suggested by both models. In other words, the comparative analysis
in our study focuses more on the purpose of the application itself
rather than just the technical aspects of the methods being used.

2. Case Study: planning context and area

This work compares the outcomes of different MCDM tech-
niques in the context of urban expansion along a major transport
corridor between the two largest cities in south-east Queensland;
the Gold Coast and Brisbane. Much of the Gold Coast’s southern
areas are either already developed or designated as low residential
density buffer areas adjoining a World Heritage Conservation Area
and elevated terrain. The region’s population growth in recent
years has raised the need to identify new areas for future urban
development. One of the potential development areas is the north-
east of the Gold Coast that covers 17,250 hectares of coastal low-
lands bounded by Logan River to the north, the Pacific Motorway
(M1) to the west, and southern Moreton Bay to the east (Fig. 1).

The main land formation dominating this area is a coastal plain
with agriculture, notably sugar cane, as the main economic activity
in the area. In addition, extraction industries, aquaculture and
tourism all play an important part in the economic growth of this
region. The study area also contains a wide range of natural
resources which, in combination with the area’s strategic location
and large agricultural land holdings, highlighted its exposition to a
long history of major development pressures.

In 2012, a change in the State’s Government prompted a major
reform of the current coastal management and planning framework
to revitalize an economy that had been stifled by a subdued global
outlook and considerable local debts. The pre-2012 coastal plan-
ning system was built on a hierarchical layer of instruments guided
by (a) management principles defined in a central document, the
State Coastal Management Plan, and (b) detailed provisions in a
set of regional coastal plans that contained maps of boundaries
for ‘coastal management district’ areas. These provided direct links



Fig. 1. Location of the study area in southeast Queensland, Australia.
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for integration with local planning schemes and the development
approval process under the State’s principal environmental plan-
ning legislation, the Sustainable Planning Act 2009 (QLD). On the
other hand, the whole Queensland State Government’s planning
regulatory is also undergoing a reform with a trend toward more
discretion approaches. The reform focuses on growth, development
and economic prosperity and accordingly replaces all the prescrip-
tive various existing policies by one new State Planning Policy. The
existing planning policies currently provide decision-makers with
detailed guideline on considering critical matters such as natural
disasters, environmental constraints, and conservation aspects.
Replacing these policies with one generalized policy will leave local
governments with the power to make subjective and bias decisions.
This situation makes the study area suitable for examining the
capability of a spatial MCDM as a systematic approach to avoid
political manipulative decisions.
3. Analysis and results

The methodology framework for this study was formulated in
four main stages.

Stage 1: Define and rank land suitability criteria - which
includes; (a) analysing the existing and emerging condition;
(b) defining land suitability criteria; and (c) ranking the criteria.
Stage 2: Conduct GIS analysis-including determining the
required GIS operations and developing digital maps for each
criterion.
Stage 3: Generate land suitability maps- identifying most suit-
able areas of land for each land-use category using AHP and
Fuzzy AHP.
Stage 4: Compare and evaluate the differences between conven-
tional and the Fuzzy AHP- this includes; comparative analysis of
criteria ranking differences, differences in specifying the opti-
mum location, options priority orders, overlay analysis of suit-
able areas and sensitivity analysis.

The first three stages are demonstrated in Sections 3 and 4 out-
lines and discusses the comparison of the methods (Stage 4).
3.1. Define and rank land suitability criteria

In the first instance, the determination of land suitability crite-
ria requires identification of principal land use types or categories
relevant to the area of interest. A detailed analysis of relevant State,
regional and local statutory planning instruments revealed a lim-
ited set of four main categories for urban development: ‘residen-
tial’, ‘recreation’, ‘extractive industry’, and ‘marine industry’,
largely stipulated by the overruling provisions under the SEQ
regional plan. Establishing the actual land suitability criteria for
this study commenced with a comprehensive literature review; a
compilation of strategic planning concepts of regional and local
planning instruments (e.g. SEQ regional plan and Gold Coast Plan-
ning Scheme); and an analysis of the existing condition and avail-
ability of local datasets.. An aggregated set of the suitability criteria
identified at two levels (main criteria and sub-criteria), for this
study is presented in Table 1.
3.1.1. Ranking land suitability criteria
The MCDM preference process requires selected participants to

rank the criteria based on pairwise comparisons. In this study these
comparisons were obtained from a survey questionnaire to
increase the robustness of the approach. Thirty-five questionnaires
were distributed among a variety of experts including members of
the local planning authority’s Planning, Environment and Trans-
port directorate as well as academic experts at national and local
levels with a recognized knowledge of planning processes in Aus-
tralia. Each participant was asked to rank the criteria and sub-cri-
teria by referring to the numerical scale of 1–9, with a score of 1
representing indifference between the two criteria and 9 repre-
senting absolute importance (Ananda & Herath, 2008; Deng,
1999; Mikhailov, 2003; Saaty & Vargas, 2001). Fourteen responses
were received (40% response rate).

In the first phase, the data for pairwise comparisons were ana-
lysed using MATLAB� scripting based on AHP algorithms to obtain
the final ranking for each criterion. The analysis was carried out
using aggregated individual preferences, which were calculated
based on geometric means of individual experts’ ratings for each cri-
terion. The geometric mean is consistent and upholds separability,



Table 1
Land suitability criteria.

Land use categories Main Criterion Subclass

Residential R-C1. Existence of infrastructure R-C1.a Power Supply
R-C1.b Access to road network
R-C1.c Water supply
R-C1.d Reliability of water resource
R-C1.e Sewerage
R-C1.f Access to public transportation

R-C2. Compatibility with surrounding land uses R-C2.a Proximity to the one of the existing growth corridors
R-C2.b Proximity to retail and commercial areas
R-C2.c Avoid proximity to industrial development
R-C2.d Avoid proximity to valuable ecosystems

R-C3. Proximity to potential work places
R-C4. Avoid proximity to potential natural hazard area R-C4.a Floodplain areas

R-C4.b Fire hazard areas
R-C4.c Storm surge

R-C5. Avoid proximity to Acid Sulfate soils

Extractive industry E-C1. Proximity to key resource areas
E-C2. Proximity to existing extraction permits
E-C3. Site area
E-C4. Compatibility with surrounding land uses E-C4.a Avoid good quality agriculture land

E-C4.b Avoid scenic routes
E-C4.c Avoid proximity to valuable ecosystems

E-C5. Existence of infrastructure E-C5.a Power supply
E-C5.b Access to road network
E-C5.c Access to haulage routes
E-C5.d Water Supply

E-C6. Proximity to potential workforce

Marine industry M-C1 Site area
M-C2. Access to navigable waterways
M-C3. Compatibility with surrounding land uses M-C3.a Avoid good quality agricultural land

M-C3.b Avoid intact key resource areas
M-C3.c Proximity to existing marine precincts
M-C3.d Avoid urban (residential areas)
M-C3.e Avoid proximity to valuable ecosystems

M-C4. Potential for further expansion
M-C5. Proximity to potential work force
M-C6. Existence of infrastructure M-C6.a Power supply

M-C6.b Access to road network
M-C6.c Water supply
M-C6.d Sewerage pump out facilities

Recreation REC-C1. Availability of attractions for recreation activities REC-C1.a Scenic routes
REC-C1.b Accessibility to the broadwater
REC-C1.c Proximity to the water ways and water bodies
REC-C1.d Proximity to natural protected areas

REC-C2. Avoid potential natural hazard areas REC-C2.a Floodplain areas
REC-C2.b Fire hazard area
REC-C2.c Storm surge

REC-C3. Compatibility with surrounding land uses
REC-C4. Existence of infrastructure
REC-C5. Site topography – <5% slope
REC-C6. Site area (minimum required area)
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unanimity and homogeneity which have to be satisfied to aggregate
individual judgements (Ananda & Herath, 2008). The Consistency
Ratio (CR) was calculated CR = CI/RI (n) to evaluate the consistency
of pairwise comparisons. Where CI is the consistency index given by
CI ¼ ðkmax � nÞ=ðn� 1Þ, RI (n) is the random consistency index for
matrices of order n and kmax is the principal eigenvalue of the judg-
ment matrix.

In this study a standard CR threshold value of 0.10 was applied,
i.e., if CR < 0.10, the pairwise comparison matrix has acceptable
consistency and the weight values are valid and can be utilised
(Ananda & Herath, 2008; Kordi & Brandt, 2012; Saaty & Vargas,
2001). The pairwise comparisons in this study were consistent
with the overall mean consistency ratio (CR) for all four categories
of <0.005.

Alternatively, Fuzzy AHP was also used in this research to incor-
porate uncertainties in the decision maker’s opinions. Fuzzy AHP
uses a range of values and, from this range; decision makers can
select the value that reflects their confidence. They can also specify
their attitude as optimistic, pessimistic or moderate. Optimistic
attitude is represented by selecting the highest value of the range,
moderate attitude is represented by the middle value of the range
and pessimistic attitude is represented by the lowest value of the
range (Dermirel et al., 2009; Jie, Meng, & Cheong, 2006).

The Fuzzy AHP weights used for this work were calculated
based on Chang’s extent analysis method (Chang, 1996). Following
section outlines the extent analysis method:

Let X ¼ fx1; x2; . . . ; xng be an object set (land-use options in our
study) and U ¼ fu1;u2; . . . ;ung be a goal set (land suitability crite-
ria). m extent analysis values for each object can be obtained as
M1

gi;M
2
gi; . . . ;Mm

gi , i ¼ 1;2; . . . ;m where Mj
gi is a triangular Fuzzy

number (Chang, 1996; Haghighi, Divandari, & Keimasi, 2010). Mj
gi

is defined by a triplet (l, m, u). The triangular Fuzzy number is
based on a three-value judgment: the minimum possible value l,
the most possible value m and the maximum possible value u.
The membership function is defined as (Deng, 1999; Ertuğrul &
Karakas�oğlu, 2008; Wu, Lee, & Lin, 2004):
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l~a xð Þ ¼
x� lj
� �

= mj � lj
� �

; lj � x � mj

x� uð Þ= mj � uj
� �

; mj � x � uj

0; otherwise
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>; ð1Þ

The next step is to find the value of Fuzzy synthetic extent with
respect to ith object:

Si ¼
Xm

j¼1

Mj
gi �

Xn

i¼1

Xm

j¼1

Mj
gi

" #�1

ð2Þ

where product � and inverse of a Fuzzy number are defined as:

M1 �M2 ¼ ðl1l2;m1m2;u1u2Þ ð3Þ

M�1 ¼ ð1=u;1=m;1=lÞ ð4Þ

Then the degree of possibility of M1 � M2 should be deter-
mined, which is defined as:

VðM1 � M2Þ ¼ hgtðM1 \M2Þ ¼
l1 � u2

ðm2 � u2Þ � ðm1 � l1Þ
ð5Þ

The degree of possibility for a convex Fuzzy number to be
greater than K convex Fuzzy numbers Miði ¼ 1;2; . . . ; kÞ can be
defined by:

VðM � M1;M2; . . . ;MKÞ
¼ V ðM � M1Þ and ðM � M2Þ and . . . and ðM � MkÞ½ �
¼min VðM � MiÞ; i ¼ 1;2;3; . . . ; k: ð6Þ

Assuming that

d0ðAiÞ ¼min V Si � Skð Þ ð7Þ

For k ¼ 1;2; . . . ; n; k–i the weight vector W0 and normalized weight
vector W are given by

W 0 ¼ d0ðA1Þ;d0ðA2Þ; . . . ;d0ðAnÞ
� �T ð8Þ

W ¼ ðd0ðA1Þ;d0ðA2Þ; . . . ;d0ðAnÞ=
Xn

i¼1

d0ðAiÞÞ ð9Þ

where Aiði ¼ 1;2; . . . ; nÞ are n elements, which show the appropri-
ateness of object set X. It is important to note that weight vector
Table 2
AHP and Fuzzy AHP priority weights for the residential category (example).

Criteria AHP Fuzzy AHP

Local weights Global weights Triangular num

Lower

R-C4 0.3853 0.3772
R-C2 0.2475 0.0854
R-C1 0.1924 0.0463
R-C3 0.1320 0.0231
R-C5 0.0428 0.0463

Sub Criteria
R-C1.d 0.3109 0.0598 0.1238
R-C1.c 0.2664 0.0513 0.1313
R-C1.f 0.2216 0.0426 0.0327
R-C1.b 0.1088 0.0209 0.0402
R-C1.e 0.0576 0.0111 0.0327
R-C1.a 0.0345 0.0066 0.0177

R-C2.a 0.3941 0.0975 0.1417
R-C2.d 0.3223 0.0798 0.2778
R-C2.b 0.2397 0.0593 0.0288
R-C2.c 0.0438 0.0108 0.0447

R-C4.c 0.4818 0.1857 0.0985
R-C4.a 0.4646 0.1790 0.2239
R-C4.b 0.0535 0.0206 0.0600
W0 and W are non-Fuzzy numbers and represent the suitability of
each option (object) with respect to the criteria (goals).

Finally, adding the weights per option multiplied by the weights
of the corresponding criteria gives the final score for each option
(Chang, 1996). Table 2 shows calculated priority weights in AHP
and Fuzzy AHP for the residential category.
3.2. GIS analysis

The second step focused on compiling a GIS database incorpo-
rating land use and environmental constraints. Existing land use
classifications were extracted from the current national land use
map modified for regional conditions (1:50,000 QLUMP data,
Queensland Government, 2012) and strategic base maps used for
the area’s planning scheme. This included good quality agricultural
lands; potential bushfire hazard areas; natural wetland and water-
way areas; acid sulfate soil hazard area; extractive resources; con-
servation strategy plan areas; infrastructure provision and
sequencing strategy; tourism strategy; public transport system
and; flood affected areas.

Raster data analysis was used to create suitability models
because spatial analyses can be performed on several raster layers
at once. Since most of the base maps used in this study were in vec-
tor format, many layers were converted to raster maps. The ArcGIS
10.0 software was used to prepare the spatial layers in land suit-
ability model. For example, maps with non-numerical attributes
(such as land use map, fire hazard areas and flood affected areas)
were transformed into ordinal maps by using ‘‘Reclassify’’ function.
In some cases, distance maps were created and then rectified to a
common scale of 1–10, giving higher values to more suitable
attributes.
3.3. Land suitability maps

The final output of a spatial MCDM approach is a series of maps
delineating areas most suitable for each land use category. In this
study the land suitability maps were formulated based on the sieve
mapping overlay technique.

After computing the priority weights for each dataset
(suitability criterion), each layer, representing each criterion, was
bers Local weights Global weights

Middle Upper

0.603 0.8457 0.2829
0.175 0.4397 0.2335
0.094 0.2451 0.2073
0.034 0.0671 0.0859
0.094 0.1315 0.1903

0.307 0.7436 0.2061 0.0427
0.345 0.8428 0.2081 0.0431
0.082 0.2644 0.1558 0.0323
0.149 0.4131 0.1817 0.0377
0.082 0.2644 0.1558 0.0323
0.034 0.1157 0.0924 0.0192

0.293 0.6171 0.3109 0.0726
0.523 1.0467 0.3459 0.0808
0.070 0.1019 0.1355 0.0316
0.114 0.2629 0.2078 0.0485

0.291 0.8197 0.3675 0.1040
0.606 1.5222 0.4153 0.1175
0.103 0.2728 0.2172 0.0614
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multiplied by its AHP and Fuzzy-AHP weight separately. A
weighted linear combination equation LS ¼

Pn
i¼1Wi

� �
was formu-

lated and used to combine layers to derive a final suitability
map. In this formula LS is the suitability for particular land-use;
n is the number of evaluated criteria and; Wi is the weight of each
criterion.

The resultant maps show spatial patterns and distributions of
the most suitable land for further development. Five suitability
classes were identified in this study with the cut-off values based
on the fundamental scale of AHP and Fuzzy AHP. Subsequently,
these five suitability classes were defined as: (S1) highly suitable
cells with weights >7; (S2) suitable cells with weights >6 and
67; (S3) moderately suitable cells with weights >5 and 66; (S4)
marginally suitable cells with weights >4 and 65; and (N) unsuit-
able cells with weights <4. The final Fuzzy AHP and AHP maps were
subsequently reclassified in ArcGIS based upon their five suitability
classes and converted to polygon layers. The highest suitability
class was then selected and considered as the candidate options
for each particular category as shown in Fig. 2 for residential use
according to AHP and Fuzzy AHP models.

4. Comparative analysis

The differences in outcomes between AHP and Fuzzy AHP
approaches were compared on several levels: (i) divergence of cri-
teria ranks for each MCDM method, (ii) the extent and location of
the preferred option for further development (spatial overlay anal-
ysis), (iii) the relative influence of each criterion in each model
(standard sensitivity analysis).

4.1. Comparison of the criteria ranking

The critical input to the spatial MCDM model is the criteria
ranking order assigned according to the relative importance weight
of each criterion. The results of this study showed differences in
the final weights derived from each MCDM algorithm. To evaluate
whether these divergences caused differences in the influence of
each criterion on the final outcomes of the model the percentage
influence of each criterion was calculated as below:
Fig. 2. Residential candidate options in
Percentage Influence ¼ 100 � WiPn
i¼1wi

ð10Þ
where wi is the global weight given to Ci and n is the total number of
criteria in each category.

From the criteria ranking order it appears that there are differ-
ences between the results of the AHP and Fuzzy AHP models.

In the ‘residential’ category, the differences between the main
criteria were not significant. For instance, R-C4 was ranked as the
most important criteria by both AHP and Fuzzy AHP, followed by
R-C1 and R-C2. The AHP model assigned R-C5 as the least impor-
tant criterion, while Fuzzy AHP assigned R-C3 last. The differences
became more apparent at the sub-criteria level. For example, R-C1
sub-criteria revealed completely different sequences for AHP and
Fuzzy AHP, respectively. Further, R-C1.e and R-C1.f were assigned
the same ranks by Fuzzy AHP.

In the ‘extractive industry’ category, the main criteria rankings
were different in the AHP and Fuzzy AHP models (with the excep-
tion of E-C2); however, the sub-criteria orders of importance were
exactly the same in both models. This suggests that the respon-
dents were more confident assigning criteria weights in this cate-
gory. Accordingly using Fuzzy set theory to consider uncertainty
resulted in the same outcome as for traditional AHP.

The differences between AHP and Fuzzy AHP in the marine cat-
egory were more pronounced (Table 3). The biggest divergence
was in the main criteria ranking of M-C4, M-C5 and, M-C6, which
were assigned the same weights and rank in the Fuzzy AHP model
and different weights in the AHP model. This is due to the Fuzzy
AHP algorithm moderating the experts’ judgments by considering
triangular Fuzzy numbers instead of a single number for each cri-
terion weight while in the AHP model extreme weights assigned by
one expert can have a big influence on the final weight. Sub-criteria
weights in this category were slightly different but not as signifi-
cantly difference as the main criteria.

The results of the ‘recreation’ category were similar to those of
the ‘marine industry’ with similar weights assigned to some main
criteria (REC-C2 and REC-C3). However, differences between sub-
criteria were less noticeable than those of the marine industry with
the AHP and Fuzzy AHP models.



Table 3
Comparison of the criteria ranking in the marine industry category.

Criteria AHP results Fuzzy AHP results

Weight Rank % Influence Weight Rank % Influence

M-C1 0.1137 5 10.70 0.1727 3 17.27
M-C2 0.2082 1 31.75 0.2167 1 21.67
M-C3 0.1908 2 See C3 sub-criteria 0.2034 2 See C3 sub-criteria
M-C4 0.1839 3 17.99 0.1357 4 13.57
M-C5 0.1318 6 3.53 0.1357 4 13.57
M-C6 0.1717 4 See C6 sub-criteria 0.1357 4 See C6 sub-criteria

C3 Sub-criteria
M-C3.a 0.049 4 4.90 0.0411 3 4.11
M-C3.b 0.007 5 0.70 0.0247 5 2.47
M-C3.c 0.051 2 5.10 0.0372 4 3.72
M-C3.d 0.050 3 5.00 0.0465 2 4.65
M-C3.e 0.059 1 5.90 0.0540 1 5.40

C6 Sub-criteria
M-C6.a 0.007 4 0.70 0.0411 2 4.11
M-C6.b 0.062 1 6.20 0.0432 1 4.32
M-C6.c 0.051 2 5.10 0.0335 3 3.35
M-C6.d 0.025 3 2.50 0.0179 4 1.79
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sub-criteria in REC-C1, REC-C2 and, REC-C4 in exactly the same
order.

Although comparisons between the AHP and Fuzzy AHP criteria
weights and rankings show some differences they do not identify
how these differences affected the final decision. Therefore, the
next step was to compare the output maps of each model to iden-
tify whether the differences in ranking order resulted in differences
between model outcomes.
4.2. Comparison of the suitability maps

The land suitability maps exhibited some differences in specify-
ing the optimum location for the different land-use categories. In
some categories, such as the extractive industry, the differences
were small while for residential land-use the differences were sig-
nificant. This is consistent with the ranking results with the differ-
ences in criteria weighting following the same patterns. These
differences are due to differences in the weights imported in the
Spatial MCDM tool using AHP and Fuzzy AHP. A quantitative com-
parison of the differences in suitability is summarized in Table 4.
According to the results, only a small portion of the study area is
classified as highly suitable (S1) for further development. This area
is about 8% in the AHP model and 13% in the Fuzzy AHP model for
residential land-use. These suitability values are due to the existing
growth corridors and infrastructure located mainly in the western
Table 4
Comparison of the suitability differences in AHP and Fuzzy AHP models.

Land-use MCDM technique Area km2

S1 S2 S3 S4

Residential AHP 13.80 52.54 91.25 14.6
Fuzzy AHP 23.00 35.35 32.22 81.3

Extractive industry AHP 0 11.63 54.16 89.8
Fuzzy AHP 0 0 0 14.0

Marine industry AHP 0 0 7.85 82.0
Fuzzy AHP 0 0 12.36 97.0

Recreation AHP 0 5.94 120.17 47.2
Fuzzy AHP 6.44 96.92 68.76 1.24

(S1) highly suitable cells with weights higher than 7;
(S2) suitable cells with weights between 6 and 7;
(S3) moderately suitable cells with weights between 5 and 6;
(S4) marginally suitable cells with weights between 4 and 5;
(N) unsuitable cells with weights less than 4.
section of the study area. Unsuitable area (N) in the residential cat-
egory covers about 5.35% and 1.21% of land area in the AHP and
Fuzzy AHP, respectively. Most of this unsuitable area is located in
the eastern and central sections of the study area where flood-
plains dominate.

The areas identified as the highest suitability class (S1) were
then selected and considered as the candidate options for each
land-use category. Next, the AHP and Fuzzy AHP models were used
to rank the suitability of each option or alternative. The option
ranking order is calculated based on the criteria weights and pair-
wise comparisons between alternatives in regard to each criterion.
Spatial distribution and priority order of these options were then
evaluated and compared in the two models.

As shown in Fig. 2 four candidate options were identified by
each model for the residential category. Areas around Ormeau
development and Ormeau train station were identified by both
models. In addition to these areas, the AHP model suggested areas
around Pimpama and Yawalpah Road, while small land parcels in
Eagleby and Stapylton were considered suitable options by the
Fuzzy AHP model. In both models the areas around Ormeau (option
A in the AHP and option C in Fuzzy AHP) were ranked the most
suitable option for residential development.

The AHP and Fuzzy AHP both showed strong consistency by
identifying two candidate options for extractive industry. The
options in these models not only cover the same area but were also
Highest suitability value % Most suitable area/total area

N

3 9.78 7.96 7.58 (S1)
1 2.22 7.73 12.64 (S1)

8 18.49 6.93 6.39 (S2)
0 160.08 5.02 7.69 (S4)

23 84.27 5.56 3.31 (S3)
4 64.74 5.77 6.79 (S3)

1 0.0159 6.45 3.26 (S2)
0 7.53 3.54 (S4)
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ranked in the same order with option A, identified as the first pri-
ority for future development by both models.

In marine industry the candidate options in both models were
distributed slightly differently. Although three options were
selected by the Fuzzy AHP model and two by the AHP model,
option B and C in the Fuzzy AHP model mainly cover the same area
as option A and B in the AHP model. Both models considered the
area adjacent to the existing marine precinct as the first priority
Table 5
Options priority weights in the AHP and Fuzzy AHP models.

Land use category Priority weights in the AHP model

Residential R-Option A (Ormeau)
R-Option B (Kingsholme Ormeau Station)
R-Option C (Pimpama)
R-Option D (Yawalpah Road)

Extractive industry E-Option A (KRA 65A1)
E-Option B (KRA 65B)

Marine industry M-Option A (Steiglitz)
M-Option B (Northern Gold Coast Marine Precinct)

Recreation REC-Option A(Stapylton)
REC-Option B (Alberton-Gilberton)
REC-Option C (Logan River)
REC_Option D (Corbould Land Trust Nature Refuge)
REC-Option E (Jacobs Well)
REC-Option G (Pimpama)

*numbers in this figure represent the criteria weights driven from the MCDM metho
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Fig. 3. Comparison of sensitivity analysis
for marine industry expansion. Option A in the Fuzzy AHP model
covers the key resource area (KRA 65A1) located in the northern
section of the study area.

The outputs of the two models identified several candidate
options for recreational activities within the study area. In both
models six options were identified, however, the ranking orders
of the models were slightly different. For example while option B
was the best option in the Fuzzy AHP model, it was ranked second
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in the AHP model. The AHP model assigned option D as the most
suitable option. Table 5 summarizes the option priority weights
in both models.
4.3. Sensitivity analysis

In the third step, sensitivity analysis (SA) was undertaken to
examine the robustness and reliability of the choice option in each
model. In this study, the correlation coefficient was calculated for
‘criteria weight changes’ and ‘selection of the suitable options for
land development’ as a measure of sensitivity (as suggested in
Cacuci, Ionescu-Bujor, & Navon, 2003; Saltellie, Chan, & Scott,
2000; Saltellie, Tarantola, Campolongo, & Ratto, 2004). In other
words, sensitivity analysis was undertaken to determine the
degree to which options (especially the best option) were sensitive
to the criteria weight changes. Greater correlation coefficient indi-
cates a higher degree of sensitivity in the outputs. To apply criteria
weight changes into the correlation coefficient calculation, a range
of ±50% weight deviations with a 1% increment of change was
applied to simulation runs in MATLAB�. Fig. 3 illustrates the result
of sensitivity analysis for all four land use categories.
Fig. 4. Residential intersection area of
The initial comparison shows less correlation coefficient for
Fuzzy AHP options. This means; in comparison to the conventional
AHP, Fuzzy AHP outputs are less sensitive to the criteria weight
changes. The differences between two models were more apparent
for the ‘residential’ and ‘recreation’ categories (Fig. 3a and d). The
least sensitive outputs were observed for the Fuzzy AHP approach
in the ‘recreation’ category with a correlation between criteria
weight changes and all the options remained below 0.08. The
AHP model option A, on the other hand, was most sensitive to
the REC-C1 changes as indicated by a correlation coefficient of
0.19 (see Fig. 3d). For the ‘residential’ category the correlation
between all the criteria and Fuzzy AHP outputs was less than
0.15, whereas option A calculated by AHP was almost 2.5 times
more sensitive to changes of the weight of the R-C3 criterion (cor-
relation coefficient = 0.36). The stability of the Fuzzy AHP outputs
particularly in the ‘residential’ and ‘recreation’ categories suggests
that; Fuzzy AHP not only presents more reliable outputs, but it
would also help to increase the stability of the outcomes where a
decision-making model includes more options or alternatives.

The MCDM outputs were more sensitive to the criteria weight
changes for the ‘extractive industry’ category (Fig. 3b), where both
models identified only two suitable options. However, Fuzzy AHP
the AHP and Fuzzy AHP models.
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still performed slightly better than AHP with the maximum corre-
lation coefficient of 0.5 (between option A and E-C3). The correla-
tion coefficient analysis for the ‘marine industry’ land use type also
showed lower sensitivity for the Fuzzy AHP model.

The fact that the outputs in the Fuzzy AHP model are less sen-
sitive to the criteria weight changes shows that the degree of dom-
ination of these options is almost independent of changes in
criteria weights. In other words, the results of sensitivity analysis
reaffirmed the findings of Kordi & Brandt’s study (Kordi & Brandt,
2012) that in general Fuzzy AHP is less sensitive to the criteria
weight changes.
4.4. Preferred primary locations for land-use development

The cogency of using a dual MCDM approach was further high-
lighted by comparing the location and extent of the preferred
options for future development in each category. As the spatial
extent of the preferred options in each method were slightly differ-
ent, to reach the greatest confidence in identifying boundaries of
the first priority option, the intersection area between two meth-
ods was considered as the most suitable area.

For the residential category for example, both MCDM models
identified almost the same area as the most suitable location for
further development with a 2.71 km2 intersection area in east
Ormeau (Fig. 4). This area contained 4 large land holdings (Fig. 5,
boundaries highlighted in red) that is considered the preferred
location given its proximity to existing infrastructure and being a
reasonable distance from potential natural hazard areas, particu-
larly potential flood affected areas. This area is also located in the
vicinity of Ormeau, one of the existing growth corridors within
the study area. This output complies with the SEQ regional plan
(2009), where land at Ormeau is identified and designated as the
growth area within the Gold Coast.
5. Discussion and conclusion

This paper examined the application of two MCDM techniques
in local land-use planning process for a small area. Implementation
of two different MCDM techniques enabled a comparative analysis
of the criteria ranking, options priority order, preferred option, and
the stability of the results using sensitivity analysis. This research
also adds a new dimension to the comparative analysis of MCDM
techniques by considering the scale and purpose of the decision-
making. This is particularly important in urban planning decisions,
where the scale and scope of the planning sets the expectations for
identifying the spatial extent of the proposed development.
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The result of sensitivity analysis reaffirms the findings of previ-
ous studies (e.g. Kordi & Brandt, 2012) that, the AHP is sensitive to
the uncertainty within the decision model. However, the compar-
ative analysis in our study showed; differences between criteria
ranking in two models does not necessarily will result in selecting
different options (as a focal point) but rather the differences are
more significant in the spatial extent of the selected options. This
finding provides a new direction for selecting MCDM method for
urban planning purposes. If the planning aims to identify priority
areas for development as a focal point, simpler MCDM methods
such as AHP should be sufficient. In this situation, selecting more
sophisticated techniques like Fuzzy AHP, which can only be seen
as a black box by stakeholders, will not necessarily generate differ-
ent outcomes. Whereas, in more detailed planning, where identify-
ing spatial boundaries is required (such as establishing a master
plan), a multiple approach using two or more MCDM techniques
would be ideal. In order to reach the greatest confidence in identi-
fying spatial extent of the preferred option, the later approach sug-
gests the intersection area between the outcomes of the two
methods as the most suitable area. The findings of this research
encourage further research on how applying other quantitative
approaches will affect the extent of the proposed development.
This is particularly significant in the real-world planning decisions
by local governments, as the spatial extent of the proposed devel-
opment areas triggers the next steps such as land acquisition.
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