
Expert Systems with Applications 42 (2015) 4022–4028
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Reversed CF: A fast collaborative filtering algorithm using a k-nearest
neighbor graph
http://dx.doi.org/10.1016/j.eswa.2015.01.001
0957-4174/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ypark@europa.snu.ac.kr (Y. Park), baksalchan@europa.snu.ac.

kr (S. Park), wsjung@cbnu.ac.kr (W. Jung), sglee@europa.snu.ac.kr (S.-g. Lee). 1 This paper is an extended version of the work of Park, Park, Lee, and Jung
Youngki Park a,⇑, Sungchan Park a, Woosung Jung b, Sang-goo Lee a

a Room 418, Building 138, Seoul National University, Sillim-9-dong, Gwanak-gu, Seoul, Republic of Korea
b Room 206B, Building E8-10, Chungbuk National University, 12 Gaesin-dong, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
a r t i c l e i n f o

Article history:
Available online 10 January 2015

Keywords:
Reversed CF
Collaborative filtering
k-Nearest neighbor graph
Greedy filtering
a b s t r a c t

User-based and item-based collaborative filtering (CF) methods are two of the most widely used tech-
niques in recommender systems. While these algorithms are widely used in both industry and academia
owing to their simplicity and acceptable level of accuracy, they require a considerable amount of time in
finding top-k similar neighbors (items or users) to predict user preferences of unrated items. In this paper,
we present Reversed CF (RCF), a rapid CF algorithm which utilizes a k-nearest neighbor (k-NN) graph. One
main idea of this approach is to reverse the process of finding k neighbors; instead of finding k similar
neighbors of unrated items, RCF finds the k-nearest neighbors of rated items. Not only does this algorithm
perform fewer predictions while filtering out inaccurate results, but it also enables the use of fast k-NN
graph construction algorithms. The experimental results show that our approach outperforms traditional
user-based/item-based CF algorithms in terms of both preprocessing time and query processing time
without sacrificing the level of accuracy.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

User-based and item-based collaborative filtering (CF) methods
are two of the most widely used techniques in recommender sys-
tems. When a user requests a recommendation, the user-based CF
algorithm, introduced by Herlocker, Konstan, Borchers, and Riedl
(1999), predicts the users preferences for all of the unrated items
based on similar users’ preferences for those items. In a similar
way, the item-based CF algorithm presented by Sarwar, Karypis,
Konstan, and Riedl (2001) predicts the preferences of the user for
all unrated items based on the user’s preference levels for similar
items.

Cremonesi, Koren, and Turrin (2010) and Lee, Song, Kahng, Lee,
and Lee (2011) state that CF algorithms produce movie recommen-
dations of a higher quality compared to baseline algorithms, which
only recommend the most popular movies or highly rated movies.
Although there have been proposed more efficient algorithms, such
as those that use singular vector decomposition presented by
Cremonesi et al. (2010) or a random walk proposed by Lee et al.
(2011) and Lee, Park, Kahng, and Lee (2013), CF algorithms are still
widely used in both industry and academia owing to their
simplicity and acceptable levels of accuracy. For example, the Ama-
zon and YouTube recommender systems, introduced by Linden,
Smith, and York (2003) and Davidson et al. (2010) respectively, uti-
lize CF-based algorithms. Additionally, many modified versions of
CF algorithms such as the work of Lee, Park, Kahng, Lee, and Lee
(2010b) and Park, Lee, and Lee (2011) are being proposed for the
purpose of building context-aware recommender systems.

One of the main drawbacks of CF algorithms is that predictions
are necessary for all unrated items. While such an approach facil-
itates evaluations of the accuracy of various algorithms using the
root-mean-square error (RMSE), this method consumes a significant
amount of recommendation time. Moreover, the pre-processing
time is also long, especially for a user-based CF algorithm, as it
has to calculate all of the similarity values between users.

In this paper, we present Reversed CF (RCF),1 a fast CF algorithm
using a k-nearest neighbor (k-NN) graph. One main idea of this
approach is that it reverses the process of finding k neighbors. Not
only does this algorithm perform fewer predictions while filtering
out inaccurate results, but it also enables the use of fast k-NN graph
construction algorithms. The contributions of our work can be
summarized as follows:
(2014a).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.01.001&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2015.01.001
mailto:ypark@europa.snu.ac.kr
mailto:baksalchan@europa.snu.ac.kr
mailto:baksalchan@europa.snu.ac.kr
mailto:wsjung@cbnu.ac.kr
mailto:sglee@europa.snu.ac.kr
http://dx.doi.org/10.1016/j.eswa.2015.01.001
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Y. Park et al. / Expert Systems with Applications 42 (2015) 4022–4028 4023
� We present RCF, a fast CF algorithm which uses a k-NN graph.
Because RCF performs fewer rating predictions, the recommen-
dation time (query processing time) is significantly reduced
compared to that of a user-based or an item-based CF
algorithm.
� We apply a fast k-NN graph construction algorithm known as

greedy filtering to reduce the RCF pre-processing time
significantly. We also apply TF-IDF weighting to our dataset
before executing the greedy filtering algorithm for further
improvements.
� Through experiments with different parameter settings, we

show that RCF outperforms traditional user-based/item-based
CF algorithms in terms of both preprocessing time and recom-
mendation time without sacrificing accuracy.

The rest of this paper is structured as follows. In Section 2, we
review user-based/item-based CF algorithms and their general
optimization techniques. In Section 3, we present RCF, a fast collab-
orative filtering algorithm. In Section 4, we show experimental
results comparing our approach to the traditional CF algorithms.
Finally, we conclude the paper and present future research direc-
tions in Section 5.
2. Related work

Adomavicius and Tuzhilin (2005) classified existing recom-
mender systems into six categories based on the types of recom-
mendation approach (content-based filtering, collaborative
filtering, and hybrid approach), and the types of recommendation
techniques (heuristic-based approach and model-based approach)
for the rating estimation. Although the traditional collaborative
and heuristic-based approaches are outperformed by the different
types of recommender systems, especially the model-based
approaches such as one using matrix factorization introduced by
Koren, Bell, and Volinsky (2009), singular vector decomposition
presented by Cremonesi et al. (2010), or random walk proposed
by Lee et al. (2011, 2013), in terms of prediction accuracy,
Desrosiers and Karypis (2011) state that the traditional approaches
are still widely used due to their simplicity, justifiability, efficiency
and stability. For example, according to Linden et al. (2003) and
Davidson et al. (2010), the Amazon and YouTube recommender
systems exploit the collaborative and heuristic-based approaches.
In this paper, we focus on the item-based CF and user-based CF
algorithms, which are two of the most popular approaches among
them.

User-based CF algorithms predict the preferences of all items
unrated by the user based on similar user preferences for those
items. According to Herlocker et al. (1999), the predicted rating
for active user a for item i is defined as follows:

pa;i ¼ ra þ
P

n2NðaÞðrn;i � rnÞ � simða;nÞP
n2NðaÞ simða;nÞj j ; ð1Þ

where NðaÞ denotes the set of k-nearest neighbors of a among the
users that have rated item i; rn;i denotes the rating of item i by user
n; ra and rn are the average ratings of user a and neighbor n,
respectively; simða;nÞ is the similarity between a and n. We use
the Pearson correlation coefficient as the similarity measure for
the user-based CF algorithm:

simða;nÞ ¼
P

i2Ci
ðra;i � raÞðrn;i � rnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2Ci
ðra;i � raÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2Ci
ðrn;i � rnÞ2

q ; ð2Þ

where Ci denotes the set of co-rated items.
Herlocker et al. (1999) and Desrosiers and Karypis (2011) state

that there are common optimization techniques for the user-based
CF algorithm, such as significance weighting, variance weighting, and
selecting neighborhoods. The first two techniques are used to adjust
the similarity values between users. If two users had fewer than 50
commonly rated items, significance weighting devalues the simi-
larity between them by (1 � # commonly rated items/50) ⁄ 100%;
variance weighting decreases the influence of items with low var-
iance, such as Titanic. The third technique selects only k neighbors
when predicting the ratings of unrated items in that the use of less
similar users may have a negative impact on the quality of
recommendations.

Item-based CF algorithms predict the preferences of items
unrated by the user based on the preference levels of similar items
for the user. According to Sarwar et al. (2001), the predicted rating
for active user a for unrated item i is defined as follows:
pa;i ¼
P

n2NðiÞra;n � simði;nÞP
n2NðiÞ simði;nÞj j ; ð3Þ
where NðiÞ denotes the set of k-nearest neighbors of i among the
items that have been rated by active user a. In order to find NðiÞ effi-
ciently, the algorithm first constructs a l-nearest neighbor graph,
which represents the l-nearest neighbor relationships between
items. Then we can find the k number of neighbors based on this
pre-computed l-NN graph instead of calculating the item-by-item
similarity matrix when a recommendation is requested. In this
equation, we use the adjusted cosine similarity as the similarity
measure:
simði;nÞ ¼
P

u2Cu
ðru;i � ruÞðru;n � ruÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

u2Cu
ðru;i � ruÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
u2Cu
ðru;n � ruÞ2

q ; ð4Þ
where Cu denotes the set of co-raters. ru is the average rating of user
u.

Cremonesi et al. (2010) and Lee et al. (2011) indicate that CF
algorithms produce movie recommendations of a high quality
compared to baseline algorithms, which only recommend the most
popular movies or highly rated movies. Although more efficient
algorithms have been proposed, CF algorithms are still widely used
in industry and academia due to their simplicity and acceptable
levels of accuracy. However, there are several barriers preventing
the realization of rapid recommendations when using existing
approaches. First, it is necessary to find different neighbors
depending on the active users. Specifically, the user-based CF algo-
rithm finds the k-nearest users from among all users who have
rated a certain unrated item i when predicting the rating of i,
whereas the item-based CF algorithm finds the k-nearest items
from among all items that have been rated by active user u. Second,
it is necessary to predict all of the unrated items when a recom-
mendation is requested by a user. This procedure is somewhat
inefficient in that according to Cremonesi et al. (2010) and Park,
Yang, Song, Lee, and Lee (2013b), we usually need only the top-N
recommendation results in real-world scenarios. While CF algo-
rithms would provide rapid recommendations if there were not
too many recommendation requests in a short time frame, it would
not be easy for commercial recommender systems in which
numerous recommendations are being requested by numerous
users to provide real-time recommendations. Although there have
been a few approaches to reduce the recommendation time, such
as the work of Sarwar et al. (2001), Das, Datar, Garg, and Rajaram
(2007), and Birtolo and Ronca (2013), either the performance gain
is not significant or the approaches are not based on user-based/
item-based collaborative filtering.



Fig. 2. Example of Reversed CF.

4024 Y. Park et al. / Expert Systems with Applications 42 (2015) 4022–4028
3. Fast collaborative filtering

Our approach consists of two main steps: first, we approxi-
mately construct a k0-nearest neighbor graph (k0-NN graph) as a
preprocessing step based on our previous work of Park, Park, Lee,
and Jung (2013a, 2014b) (Section 3.1). Here, we usually set k0 such
that l� k0 > k. Second, we find the k neighbors of unrated items
based on the k0-NN graph. Then we recommend items to users
using the k neighbors and our revised version of the non-normal-
ized cosine neighborhood (Section 3.2).

3.1. Nearest neighbor graph construction

The construction of a k0-NN graph is a task which involves find-
ing the k0 nodes most similar to each node. Although other tasks,
such as k-NN search presented by Datar, Immorlica, Indyk, and
Mirrokni (2004) and Gan, Feng, Fang, and Ng (2012), reverse
k-NN search proposed by Achtert et al. (2006), similarity join intro-
duced by Lee, Park, Shim, and Lee (2010a) and top-k similarity join
presented by Xiao, Wang, Lin, and Shang (2009) and Kim and Shim
(2012), can be used for recommender systems, we use the k0-NN
graph because it is one of the most appropriate data structure for
our algorithm. One of the easiest ways to construct a k0-NN graph
is to calculate the similarities between all of the nodes and extract
the nodes most similar to each node. In spite of its simplicity, this
brute-force approach requires quadratic time complexity, which is
burdensome when used in conjunction with large amounts of data.
An alternative way to cope with this problem is to use inverted
indices given the fact that item-by-user matrices are usually very
sparse. However, according to Park et al. (2014b), this approach
is also not appropriate for handling large amounts of high-dimen-
sional data.

Our main idea is to construct an approximate k0-NN graph based
on greedy filtering presented by Park et al. (2013a, 2014b) in order
to speed up this process. It is known that greedy filtering outper-
forms other k0-NN graph construction algorithms, such as NN-Des-
cent proposed by Dong, Moses, and Li (2011) or kNN-Overlap
presented by Chen, Fang, and Saad (2009), for high-dimensional
sparse datasets. If there is no decline in the quality of recommen-
dations when we use approximate graphs, we do not have to spend
much time on building an exact k0-NN graph. The accuracy of the
k0-NN graph is defined as follows:

Accuracy ¼ #correct k0 � nearest neighbors
#nodes � k0

ð5Þ

Fig. 1 shows an example of how greedy filtering constructs an
approximate k0-NN graph. In this figure, there are five items and
ten users; the values in the matrix indicate the ratings, each corre-
sponding to its item and user. The main idea of greedy filtering is to
filter item pairs whose ‘‘large value dimensions’’ (the shaded por-
tions in the figure) do not overlap at all. In this figure, i1 and i2

share a common large value dimension. Hence, we calculate the
Fig. 1. Example of greedy filtering.
similarity between i1 and i2. In contrast, i2 and i4 do not have a
common large value dimension; accordingly, we do not calculate
the similarity between i2 and i4. Park et al. (2014b) describe in
detail the manner in which large value dimensions are selected
for each item. In an actual implementation of this method, we
use adjacency lists instead of adjacency matrices. The empirical
time complexity of greedy filtering is Oð Ij jÞ, where I is a set of
items.

According to Park et al. (2014b), this algorithm performs much
better when we apply the TF-IDF weighting scheme and this pro-
cess does not decrease the quality of recommendations signifi-
cantly. Thus we adjust the values in the input matrix based on
the TF-IDF weighting scheme:

M0
i;j ¼ 0:5þ 0:5 �Mi;j

max Mi;k : uk 2 U
� �

 !
� log

jUj
FðujÞ

� �
; ð6Þ

where Mi;j denotes the original value of the matrix corresponding to
the ith item and the jth user; U denotes a set of users; FðujÞ denotes
the number of items that have values corresponding to the users uj.

For example, suppose that we use the cosine similarity with the
TF-IDF weighting scheme and that there are two items i1 and i2 in a
dataset. In such a case, greedy filtering would calculate their level
of similarity if they are highly rated by at least one certain inactive
user. Otherwise, it would filter out those item pairs.

3.2. Fast recommendation algorithm

Recall that the two main drawbacks of user-based or item-
based CF algorithms are that they have to find different neighbors
depending on active users and that they have to predict all of the
unrated items. Our novel algorithm, RCF, solves these problems.
Let B½i� be a k-NN list of item i, which was already calculated in Sec-
tion 3.1. Let Iu and I r be sets of unrated items and rated items of
an active user a, respectively. Then RCF works as follows:

1. For every item i 2 Iu, prepare an empty set S½i�.
2. For every item i 2 I r and every item such that j 2 Iu and j 2 B½i�,

add i to S½j�.
3. For every item i 2 Iu, if jS½i�j > k, then delete all except for the

most similar k1 items from S½i�.
4. Then, predict the ratings for all items i such that i 2 Iu and
jS½i�j ¼ k,

pa;i ¼ ri þ
X
n2S½i�
ðra;n � rnÞ � simði;nÞ ð7Þ

Here, simði;nÞ is the cosine similarity between i and n. It is defined
as follows:

simði;nÞ ¼
P

c2Cu
rc;i � rc;nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

c2Cu
ðrc;iÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
c2Cu
ðrc;nÞ2

q ð8Þ



Table 1
Summary of the recommendation algorithms.

Algorithm Phase Task

UserCF Preprocessing Similarity matrix construction
Significance weighting

Recommendation Selecting k users that have rated the
item
All rating predictions

ItemCF Preprocessing l-NN graph construction (l� k)
Recommendation Selecting k items that have been rated

by an active user
All rating predictions

RCF Preprocessing k0-NN graph construction (k0 > k)
Recommendation Selecting k items

Fewer rating predictions

RCF + TFIDF + GF Preprocessing k0-NN graph construction using GF
(k0 > k)

Recommendation Selecting k items
Fewer rating predictions

Y. Park et al. / Expert Systems with Applications 42 (2015) 4022–4028 4025
If an unrated item does not have the list of k1 number of items,
RCF does not predict its rating.

Fig. 2 shows an illustrative example of our approach. In this
example, we set k and k0 to 2 and 2, respectively. Thus we find 2-
nearest neighbors for each rated item. An edge from a rated item
i to an unrated item j indicates that j is one of the 2-nearest neigh-
bors of i. The first unrated item has three incoming edges and the
similarities between this item and the rated items are 0.9, 0.8 and
0.7 respectively. Because k is 2 in this example, we discard the edge
labeled with 0.7, and predict the ratings of the item based on the
remaining edges. On the other hand, the second unrated item has
just one incoming edge so that we do not predict the rating of
the item.

The intuition behind this algorithm is that if one of the nearest
neighbors of rated item i is unrated item j, there would be a high
probability that one of the nearest neighbors of unrated item j is
rated item i. This is why the proposed algorithm is termed
Reversed CF. One of the main characteristics of RCF is that it does
not predict the preferences of all unrated items of a user. This
approach does not sacrifice the level of recommendation quality
for two reasons. First, if the rating of an unrated item is predicted
by RCF, RCF and the item-based CF algorithm select the same
neighbors for predicting the item in many cases. Second, if the rat-
ing of an unrated item is not predicted by RCF, the average similar-
ity value of the k-nearest neighbors of the unrated item is usually
lower than that of another item predicted by RCF, which is the case
when it is difficult for the item-based CF algorithm to predict accu-
rate ratings. In Section 4, we will discuss this in more detail.
4. Experiments

4.1. Experimental setup

4.1.1. Dataset and algorithms
We use the MovieLens dataset2 for comparisons: there are

1,000,209 ratings, 3952 movies, and 6040 users; each user rates at
least 20 number of items; the rating scale ranges from 1 to 5 in
which higher ratings indicate greater preference. We considered four
types of algorithms for a comparison: UserCF implements the work
by Herlocker et al. (1999); ItemCF implements the work by Sarwar
et al. (2001); RCF implements only the fast recommendation algo-
rithm presented in Section 3.2; RCF + TFIDF + GF implements the fast
recommendation algorithm presented in both Sections 3.1 and 3.2.
Fig. 3. Comparison of all algorithms (recall).2 <http://grouplens.org/datasets/movielens/>.
We set the default parameters k; k0, and l to 10, 20, and 300, respec-
tively. Table 1 summarizes the above mentioned recommendation
algorithms and their related parameters.

4.1.2. Quality evaluation
We follow the testing methodology of a recommender system

introduced by Cremonesi et al. (2010). We divide the ratings into
two groups. One group of data consisting of 986,206 ratings
(98.6% of ratings) is used for our training set, and the other group
of data consisting of 14,003 ratings (1.4% of the ratings) is used for
the probe set. The test set consists of all of the five-star ratings
(1661 ratings) of 3719 unpopular movies (99.65% of the movies)
in the probe set. Then, for each rating of movie m rated by user u
in the test set, we randomly select 1000 movies unrated by u
and recommend the top-N movies from among the 1001 movies
(the 1000 items selected in addition to m); if we recommend m,
we refer to this as a hit. Finally, we measure the degree of recall
using the following equation:

recall ¼ # hits
jtest setj : ð9Þ
4.1.3. Performance evaluation
We measure both the preprocessing time and the recommenda-

tion time for each algorithm. In UserCF, the preprocessing time is
the overall time needed to construct the user-by-user similarity
matrix plus the time for significance weighting. For ItemCF, we
measure the l-nearest neighbor (l-NN) graph construction time as
the preprocessing time. We use the inverted index-based method
to calculate the l-NN graph, as it is one of the fastest algorithms
for constructing an exact nearest neighbor graph. Similarly, the
preprocessing time of RCF consists of only the time needed to con-
struct the k0-NN graph; we construct this graph using inverted
indices. The preprocessing time of RCF + TFIDF + GF is identical to
that of RCF, except it uses greedy filtering to construct the k0-NN
graph. The recommendation time is the total time to produce
top-N recommendations for all 6040 users, because according to
Davidson et al. (2010), it is common to precompute all of the rec-
ommendation results in commercial systems.

4.2. Overall comparison

Fig. 3 shows the recall of the above mentioned algorithms while
varying the number of recommended items. In this result, RCF out-
performs both UserCF and ItemCF, which means that fewer rating
predictions yield better results. When we apply the TF-IDF
weighting scheme and use the approximate k0-NN graph with
80% accuracy instead of an exact k0-NN graph, the recall is
decreased slightly, though this method still outperforms UserCF
and ItemCF.

http://grouplens.org/datasets/movielens/


Table 2
Comparison of prediction accuracy with two different item sets.

Item set Avg. sim. Avg. MAE Avg. RMSE

Items selected by RCF 0.1954 0.6475 0.8361
Items NOT selected by RCF 0.1300 0.7353 0.9300

Fig. 4. Comparison of all algorithms (elapsed time).

Fig. 5. Recall of RCF variants with different k0 parameters.

4026 Y. Park et al. / Expert Systems with Applications 42 (2015) 4022–4028
There are two main reasons why RCF outperforms ItemCF
despite the fact that RCF simulates ItemCF. First, ItemCF usually
predicts the ratings of unrated items based on fewer similar items.
Second, rating predictions based on less similar items are less accu-
rate than those based on similar items. Table 2 provides evidence
of these assertions. First, we divided the items into two subsets,
where one subset contains unrated items whose ratings are
Fig. 6. Effect of differe
predicted by RCF and the other subset contains other unrated
items. Then, for each subset, we measured the average similarity
of selected neighbors, MAE, and RMSE after executing ItemCF.
The average similarity value supports the first assertion, and
MAE and RMSE support the second assertion. Note MAE and RMSE
of user u are defined as follows:

MAEðuÞ ¼
P

i2IS
jpu;i � p̂u;ij
jI Sj

ð10Þ
RMSEðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2IS

pu;i � p̂u;i
� �2

jI Sj

vuut
; ð11Þ

where p̂u;i denotes the predicted rating of item i by u; pu;i denotes
its corresponding actual rating, and I S denotes an item set, which
can be a set of either items selected by RCF or items not selected
by RCF.

One limitation of RCF is that the algorithm cannot recommend
many items if the parameter k0 is not large enough. Because of this
limitation, as shown in Fig. 3, the recall of RCF and the RCF variant
does not increase significantly when N is large enough. Although
Sarwar et al. (2001) and Park et al. (2013b) state that we usually
need only a small number of recommendations in real-world sce-
narios, if there is a need for a very large number of recommenda-
tions, the performance of RCF would be similar to that of ItemCF.

Fig. 4 shows the pre-processing time and recommendation time
of the above mentioned algorithms on a log scale: (1) UserCF is the
slowest algorithm among these four algorithms. As a preprocessing
step, this algorithm constructs a user-by-user similarity matrix and
applies the significance weighting to the similarity matrix, which
takes quadratic time complexity in total. It also consumes a consid-
erable amount of recommendation time when a query is requested,
because for each unrated item, it selects k users who have rated the
item and predicts the rating of the item. (2) ItemCF is faster than
UserCF in that it does not need to calculate a similarity matrix or
complete the significance weighting step. Instead, it constructs a
l-NN graph in which l greatly exceeds k. Although l is a large con-
stant, we reduce the time to construct the graph using inverted
index join, which is one of the fastest algorithms among all exact
k-NN graph construction algorithms. (3) While the preprocessing
time of RCF is similar to that of ItemCF, this algorithm significantly
outperforms ItemCF in terms of recommendation time for two rea-
sons. First, it does not take much time to select the neighbors of
each unrated item in that it only checks the set size of each unrated
item and then deletes all except for the most similar k items. Sec-
ond, it calculates fewer item ratings, which dramatically decreases
the recommendation time. (4) RCF + TFIDF + GF is the fastest
algorithm among these four algorithms. While its recommendation
time is similar to that of RCF, it outperforms RCF in terms of
nt k0 parameters.



Fig. 7. Recall of RCF variants with different k0-NN graph accuracy levels.

Fig. 8. Elapsed time of RCF variances with different graph accuracy levels.

Y. Park et al. / Expert Systems with Applications 42 (2015) 4022–4028 4027
preprocessing time, as it constructs an approximate k0-NN graph by
means of greedy filtering. In Section 4.3, we demonstrate even fas-
ter recommendations by changing the greedy filtering parameters.
4.3. Effects of parameter changes

We identified several important factors that affect the quality
and performance of the algorithms: the parameters k; k0; l, and
the k0-NN graph accuracy. Because the parameters k and l were
analyzed in the work of Herlocker et al. (1999) and Sarwar et al.
(2001), we only analyze k0 and the k0-NN graph accuracy in this
paper. Fig. 5 shows the recall of RCF variants with different param-
eter k0, varying the number of recommended items. Note k0 is
directly related to the number of rating predictions performed by
RCF. When we increase the parameter from 10 to 20 or from 20
to 30, the recommendation quality is improved because we can
consider more items for the top-N recommendation. However,
when we increase the parameters from 30 to 70, the recommenda-
tion quality is not improved for the reasons given in the previous
subsection. Fig. 6(a) and (b) show that the parameter k0 is also
related to the recommendation time and the percentage of rating
predictions, respectively. Because we can improve the execution
time by setting k0 to a low value, it would be desirable to set k0

to 20 or 30.
Similarly, Figs. 7 and 8 show the recall and pre-processing time

of RCF variants with different graph accuracy levels, varying the
number of recommended items. There are two interesting findings
in these figures: first, the recall is the highest when k0-NN graph
accuracy is 70%. We can see this result because we cannot guaran-
tee that we will always prefer the items more similar to the pre-
ferred items. Similar results are shown in the work of Chen et al.
(2009), where an approximate k-NN graph is used for fast agglom-
erative clustering. Second, the elapsed time of RCF is the highest
when k0-NN graph accuracy is 90%, because we use inverted index
join instead of greedy filtering when we construct the exact k0-NN
graph. Generally, however, the quality of recommendations
slightly drops off when we decrease the graph accuracy, whereas
the pre-processing time is significantly reduced. We can infer that
these RCF variants perform even better in terms of preprocessing
time as the number of nodes or dimensions scales up due to the
scalability gained when using greedy filtering.

5. Conclusions

This paper presents RCF, a fast CF algorithm which utilizes a k0-
NN graph. Not only does this algorithm perform fewer predictions
while filtering out inaccurate results, but it also supports the rapid
retrieval of similar users. The experimental results show that our
approach outperforms traditional user-based/item-based CF algo-
rithms in terms of both preprocessing time and query processing
time without sacrificing the level of accuracy when we set k and
k0 to 10 and 20, respectively. While much of the recent work, such
as Birtolo and Ronca (2013) and Lee et al. (2013), focuses on
improving the recommendation quality, the main aim of our
approach is to reduce the elapsed time required for
recommendation.

The limitations of our approach are twofold: first, RCF is not
appropriate for the case where we have to predict the ratings for
all of the unrated items. In future work, we would like to present
a novel algorithm for coping with this problem. Second, the perfor-
mance of greedy filtering significantly depends on the dataset so
that the algorithm could be slower than inverted index join in
the worst case. Thus we are currently developing a novel k0-NN
graph construction algorithm that guarantees high level of quality
and performance.

Acknowledgments

This work was supported by the National Research Foundation
of Korea (NRF) Grant funded by the Korea Government (MSIP) (No.
20110030812). The work of Woosung Jung was supported by Basic
Science Research Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2012R1A1A1043769).

References

Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., & Renz, M. (2006). Efficient
reverse k-nearest neighbor search in arbitrary metric spaces. In Proceedings of
the 2006 ACM SIGMOD international conference on management of data
(pp. 515–526). ACM.

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering, 17, 734–749.

Birtolo, C., & Ronca, D. (2013). Advances in clustering collaborative filtering by
means of fuzzy c-means and trust. Expert Systems with Applications, 40,
6997–7009.

Chen, J., Fang, H.-r., & Saad, Y. (2009). Fast approximate kNN graph construction for
high dimensional data via recursive Lanczos bisection. The Journal of Machine
Learning Research, 10, 1989–2012.

Cremonesi, P., Koren, Y., & Turrin, R. (2010). Performance of recommender
algorithms on top-n recommendation tasks. In Proceedings of the fourth ACM
conference on recommender systems (pp. 39–46). ACM.

Das, A. S., Datar, M., Garg, A., & Rajaram, S. (2007). Google news personalization:
Scalable online collaborative filtering. In Proceedings of the 16th international
conference on world wide web (pp. 271–280). ACM.

Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. (2004). Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the twentieth
annual symposium on computational geometry (pp. 253–262). ACM.

Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., et al. (2010). The
youtube video recommendation system. In Proceedings of the fourth ACM
conference on recommender systems (pp. 293–296). ACM.

Desrosiers, C., & Karypis, G. (2011). A comprehensive survey of neighborhood-based
recommendation methods. In Recommender systems handbook (pp. 107–144).
Springer.

Dong, W., Moses, C., & Li, K. (2011). Efficient k-nearest neighbor graph construction
for generic similarity measures. In Proceedings of the 20th international
conference on world wide web (pp. 577–586). ACM.

http://refhub.elsevier.com/S0957-4174(15)00006-8/h0005
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0005
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0005
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0005
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0010
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0010
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0010
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0015
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0015
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0015
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0020
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0020
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0020
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0025
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0025
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0025
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0030
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0030
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0030
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0035
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0035
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0035
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0040
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0040
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0040
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0045
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0045
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0045
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0050
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0050
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0050


4028 Y. Park et al. / Expert Systems with Applications 42 (2015) 4022–4028
Gan, J., Feng, J., Fang, Q., & Ng, W. (2012). Locality-sensitive hashing scheme based
on dynamic collision counting. In Proceedings of the 2012 ACM SIGMOD
international conference on management of data (pp. 541–552). ACM.

Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic
framework for performing collaborative filtering. In Proceedings of the 22nd
annual international ACM SIGIR conference on research and development in
information retrieval (pp. 230–237). ACM.

Kim, Y., & Shim, K. (2012). Parallel top-k similarity join algorithms using
mapreduce. In IEEE 28th international conference on data engineering (ICDE),
2012 (pp. 510–521). IEEE.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer, 42, 30–37.

Lee, S., Park, S., Kahng, M., & Lee, S.-g. (2013). Pathrank: Ranking nodes on a
heterogeneous graph for flexible hybrid recommender systems. Expert Systems
with Applications, 40, 684–697.

Lee, D., Park, S. E., Kahng, M., Lee, S., & Lee, S.-g. (2010b). Exploiting contextual
information from event logs for personalized recommendation. In Computer and
information science 2010 (pp. 121–139). Springer.

Lee, D., Park, J., Shim, J., & Lee, S.-g. (2010a). An efficient similarity join algorithm
with cosine similarity predicate. In Database and Expert Systems Applications
(pp. 422–436). Springer.

Lee, S., Song, S.-i., Kahng, M., Lee, D., & Lee, S.-g. (2011). Random walk based entity
ranking on graph for multidimensional recommendation. In Proceedings of the
fifth ACM conference on recommender systems (pp. 93–100). ACM.
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-
item collaborative filtering. IEEE Internet Computing, 7, 76–80.

Park, Y., Yang, B., Song, S., Lee, S., & Lee, S.- g. (2013b). Context-aware
recommendation in smart cars. In Proceedings of the 6th biennial workshop on
digital signal processing for in-vehicle systems (pp. 64–67).

Park, Y., Park, S., Lee, S.- g., & Jung, W. (2014a). Fast collaborative filtering with a k-
nearest neighbor graph. In Proceedings of the international conference on big data
and smart computing (pp. 92–95).

Park, S. E., Lee, S., & Lee, S.-g. (2011). Session-based collaborative filtering for
predicting the next song. In Proceedings of first ACIS/JNU international conference
on computers, networks, systems and industrial engineering (pp. 353–358). IEEE.

Park, Y., Park, S., Lee, S.-g., & Jung, W. (2013a). Scalable k-nearest neighbor graph
construction based on greedy filtering. In Proceedings of the 22nd international
conference on world wide web companion (pp. 227–228). International World
Wide Web Conferences Steering Committee.

Park, Y., Park, S., Lee, S.-g., & Jung, W. (2014b). Greedy filtering: A scalable algorithm
for k-nearest neighbor graph construction. In Database systems for advanced
applications (pp. 327–341). Springer.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th international
conference on world wide web (pp. 285–295). ACM.

Xiao, C., Wang, W., Lin, X., & Shang, H. (2009). Top-k set similarity joins. In IEEE 25th
international conference on data engineering, 2009. ICDE’09 (pp. 916–927). IEEE.

http://refhub.elsevier.com/S0957-4174(15)00006-8/h0055
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0055
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0055
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0060
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0060
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0060
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0060
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0065
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0065
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0065
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0070
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0070
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0075
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0075
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0075
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0080
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0080
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0080
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0085
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0085
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0085
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0090
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0090
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0090
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0095
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0095
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0110
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0110
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0110
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0115
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0115
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0115
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0115
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0120
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0120
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0120
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0125
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0125
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0125
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0130
http://refhub.elsevier.com/S0957-4174(15)00006-8/h0130

	Reversed CF: A fast collaborative filtering algorithm using a k-nearest neighbor graph
	1 Introduction
	2 Related work
	3 Fast collaborative filtering
	3.1 Nearest neighbor graph construction
	3.2 Fast recommendation algorithm

	4 Experiments
	4.1 Experimental setup
	4.1.1 Dataset and algorithms
	4.1.2 Quality evaluation
	4.1.3 Performance evaluation

	4.2 Overall comparison
	4.3 Effects of parameter changes

	5 Conclusions
	Acknowledgments
	References


