Abstract

Purpose – The purpose of the paper is to examine the binary character of total quality management (TQM) in food companies and to determine the impact of the two aspects of TQM – the “soft” and “hard” – on the quality management benefits.

Design/methodology/approach – A research project was carried out in 90 Greek food companies, using the questionnaire method. Two measurement models have been formulated. The first model includes the TQM philosophical elements and quality tools/techniques, while the second model includes the quality management benefits. Exploratory factor analyses are applied to extract the latent factors. The factors that significantly influence the quality management benefits are determined through multiple linear regression analyses.

Findings – The analysis of the models confirms the binary character of TQM (the “soft” and “hard” TQM elements) in food companies and the existence of internal and external quality management benefits. The “soft” TQM elements have a significant direct impact on quality improvement, employee benefits and customer satisfaction. However, the impact of the “hard” TQM elements on the above quality management benefits is not direct but indirect, through their significant correlation with the “soft” TQM elements. Finally, quality improvement is also a significant factor that directly influences employee benefits, customer satisfaction and business performance.

Research limitations/implications – The small size of the sample of the responding food companies, the diversity of these companies and the subjective character of the data collected are limitations that suggest future research recommendations.

Practical implications – Food companies should realize the leading role of the “soft” aspect of TQM and the supporting role of the “hard” aspect in maximizing the quality management benefits and as a consequence in withstanding the current economic downturn.

Originality/value – Focusing on “quality-oriented” food companies that have ample experience in quality and food safety management systems, the present study reveals a significant direct impact of the “soft” TQM elements and an indirect impact of the “hard” TQM elements on the quality management benefits.

Keywords Food companies, Quality management benefits, Soft and hard TQM elements

Paper type Research paper

Introduction

Quality management is a management philosophy, which has evolved from a rather narrow and mechanistic approach known as statistical quality control introduced by Shewhart, to a more holistic and humanistic approach under the term total quality management (TQM) (Dahlgaard-Park et al., 2001). TQM has spread globally across
different industries and sectors (Santos-Vijande and Alvarez-Gonzalez, 2009; Corredor and Goni, 2010). The evidence from the fieldwork of Beardsell and Dale (1999) endorses the view that TQM is suitable for adoption within the food supply and distribution industry. However, according to van der Spiegel et al. (2005) and Alsaleh (2007), TQM is the least frequently used quality management strategy in the food manufacturing industry.

In almost all definitions of TQM, two substantial aspects can be identified, which include the “soft” (or “philosophical”) and the “hard” (or “technical”) TQM elements (Dale, 1996; Thiagaragan et al., 2001; Haifeez et al., 2006; Douglas, 2006; Jimenez-Jimenez and Martinez-Costa, 2009; Arumugam et al., 2009). Examples of the “hard” TQM elements include statistical process control and Ishikawa problem-solving tools. The “soft” TQM elements come from leadership, organizational skill and culture, executive commitment, open organization, participative team dynamics and empowerment (Jimenez-Jimenez and Martinez-Costa, 2009).

The purpose of implementing TQM is to provide quality products or services to customers, which will, in turn, increase productivity and decrease costs. As a consequence, company competitiveness and customer satisfaction in the marketplace will be enhanced (Kumar et al., 2011). In other words, if the TQM plan is implemented properly, it positively influences a wide range of areas regarding the internal and external business environment (Abdullah et al., 2008; Kumar et al., 2009; Santos-Vijande and Alvarez-Gonzalez, 2009; Arumugam et al., 2009; Salaheldin, 2009; Corredor and Goni, 2010; Valmohammadi, 2011).

The practical implications of TQM on an increasing range of firms’ operations are receiving growing attention from researchers (Santos-Vijande and Alvarez-Gonzalez, 2009). However, it is difficult to answer the question whether TQM is a terrific quality marvel or a tragic quality malpractice. The answer depends on several factors, for instance, to what type of organization TQM is applied and what definition of TQM is used (Bergquist et al., 2005). This statement underlie the call for more empirical research to clarify how the TQM evolutionary path is related to critical success conditions within an economic sector, industry and era (Idris and Zairi, 2006). The success of the TQM research depends on the development of valid and reliable measures which replicate the actual TQM elements, companies adopt in the real world. Not only should the measurement be consistent within a certain study, but also across many studies (Jitpaiboon and Rao, 2007). According to Oakland (2011), there is a need to improve the common understanding concerning which quality improvement approaches and tools to use in order to support continuous improvement and improve the “quality rating” of companies. Fotopoulos and Psomas (2009a) propose the investigation of the impact of the “soft” and “hard” TQM elements on the quality management benefits in different business sectors.

The present study contributes to the body of literature by focusing on the beneficial effects of the TQM philosophical elements and quality tools/techniques in the food sector. The purpose of the study is to examine the two-dimensional nature of TQM in food companies and to explore the impact of the “soft” and “hard” TQM elements on the quality management benefits. Two measurement models are formulated and tested through exploratory factor analyses (EFA). The first model consists of the “soft” and “hard” TQM elements, while the second one consists of the internal and external quality management benefits. The factors that significantly influence quality management benefits are determined through multiple linear regression analyses.
The rest of the paper is structured as follows: the first part reviews the literature resulting in the formulation of specific research hypotheses. The next part describes the methodology of a research project carried out in food companies. This is followed by the analysis and the respective results. In the next part, the results are discussed and the final conclusions are presented.

Literature review

The “soft” and “hard” TQM elements

Although there is no consensus on a definition of TQM, there are some underlying, implicit agreements concerning the definition, scope and the core principles and concepts. In other words, despite the many TQM frameworks identified in literature, there are many common elements running through them (Martinez-Lorente et al., 1998). According to Beardsell and Dale (1999), the list of the TQM characteristics identified in the food industry is similar to those in other industries. So, based on an extensive literature review, the following elements are identified as those that constitute the “soft/philosophical” aspect of TQM (Santos-Vijande and Alvarez-Gonzalez, 2009; Arumugam et al., 2009; Fotopoulos and Psomas, 2009a, 2010; Jimenez-Jimenez and Martinez-Costa, 2009; Kumar et al., 2009, 2011; Corredor and Goni, 2010; Tari and Molina-Azorin, 2010; Psomas and Fotopoulos, 2010; Valmohammadi, 2011; Das et al., 2011): top management commitment, strategic quality planning, employee involvement, supplier involvement, customer focus, process focus, continuous improvement, fact-based decision making and human resource development. In addition to the “soft” TQM elements, the quality tools/techniques (Table I) are also identified in the literature as a significant aspect of TQM, namely the “hard” TQM elements (Jimenez-Jimenez and Martinez-Costa, 2009; Fotopoulos and Psomas, 2009b, 2010; Hokoma et al., 2010; Valmohammadi, 2011).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Hard TQM elements</th>
<th>Soft TQM elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaiser-Meyer-Olkin = 0.909</td>
<td>Factor loadings</td>
<td></td>
</tr>
<tr>
<td>Run chart</td>
<td>0.871</td>
<td></td>
</tr>
<tr>
<td>Relations diagram</td>
<td>0.849</td>
<td></td>
</tr>
<tr>
<td>Quality function deployment</td>
<td>0.842</td>
<td></td>
</tr>
<tr>
<td>Failure mode and effect analysis</td>
<td>0.810</td>
<td></td>
</tr>
<tr>
<td>Stem and leaf diagram</td>
<td>0.810</td>
<td></td>
</tr>
<tr>
<td>Control charts</td>
<td>0.810</td>
<td></td>
</tr>
<tr>
<td>Scatter diagram</td>
<td>0.778</td>
<td></td>
</tr>
<tr>
<td>Cause and effect diagram</td>
<td>0.765</td>
<td></td>
</tr>
<tr>
<td>Benchmarking</td>
<td>0.735</td>
<td></td>
</tr>
<tr>
<td>Continuous improvement</td>
<td>0.851</td>
<td></td>
</tr>
<tr>
<td>Top management commitment</td>
<td>0.836</td>
<td></td>
</tr>
<tr>
<td>Customer focus</td>
<td>0.824</td>
<td></td>
</tr>
<tr>
<td>Human resource development</td>
<td>0.820</td>
<td></td>
</tr>
<tr>
<td>Fact-based decision making</td>
<td>0.811</td>
<td></td>
</tr>
<tr>
<td>Strategic quality planning</td>
<td>0.804</td>
<td></td>
</tr>
<tr>
<td>Process focus</td>
<td>0.802</td>
<td></td>
</tr>
<tr>
<td>Employee involvement</td>
<td>0.750</td>
<td></td>
</tr>
<tr>
<td>Supplier involvement</td>
<td>0.702</td>
<td></td>
</tr>
<tr>
<td>Eigenvalue</td>
<td>8.542</td>
<td>3.733</td>
</tr>
<tr>
<td>Cumulative variance (%)</td>
<td>47.46</td>
<td>68.19</td>
</tr>
</tbody>
</table>

Table I. “The soft and hard TQM elements” – exploratory factor analysis
Quality management benefits

The big question for companies regarding the implementation of new strategies such as TQM is often: “will it pay?” (Bergquist et al., 2005). Proponents of TQM consistently insist that a certain set of TQM practices/sub-practices, if correctly implemented, contribute to the success of TQM and thereby lead to high performance (Jitpaiboon and Rao, 2007). According to Oakland (2011), TQM is not just a theory, it is about the achievement of tangible levels of results – in key areas – that are “best in class”, with evidence to provide the confidence that these results can be sustained (through soundly based, systematic and continuously improved business operations and activities). This evidence is not limited to the financial or key results, which demonstrate the outcome of past performance, but also includes results from other stakeholders that serve as leading indicators of future financial/key results performance; measured excellence in customer satisfaction and loyalty, people motivation and capability and the satisfaction of the wider community (Oakland, 2011). So, based on the literature, the following benefits are derived from the implementation of TQM (Kumar et al., 2009, 2011; Fotopoulos and Psomas, 2009a, 2010; Jimenez-Jimenez and Martinez-Costa, 2009; Tari and Molina-Azorin, 2010; Psomas and Fotopoulos, 2010; Das et al., 2011): customer satisfaction, employee satisfaction, the protection of the natural and social environment, quality improvement and improved business performance.

TQM aspects influencing quality management benefits

Valmohammadi (2011), using a sample of Iranian manufacturing SMEs, reaches the conclusion that the “soft” TQM practices and quality tools/techniques have a significant impact on organizational performance concerning employee morale, customer satisfaction, profitability, sales growth and market share. Salaheldin (2009) identifies three “soft” critical success factors of TQM implementation in Qatari industrial SMEs, namely, strategic, tactical and operational factors, all of which have a substantial positive effect on operational performance and non-financial performance, which in turn lead to increased financial performance. Das et al. (2011), studying manufacturing companies of Thailand, the majority of which belong to the agriculture and food sector, support that companies with high-leadership competencies adopt TQM principles more effectively and consequently are able to produce higher quality products. Trehan and Kapoor (2011), focus on the TQM journey of a major milk-producing cooperative of India. They demonstrate that the project-by-project approach, which is at the heart of the TQM workshop, in conjunction with the basic seven quality control tools, is an excellent approach for building a culture of continuous improvement. More specifically, the TQM workshop results in the following intangible benefits: transformation in attitude of employees, creation of team culture, breakdown of departmental silos and tremendous improvement in labour-management relations. These benefits, in turn, result in tangible financial gains. Psomas and Fotopoulos (2010), using a sample of Greek food companies, determine four latent factors regarding TQM practices (process and data quality management, employee involvement, customer focus and quality practices of top management), and three latent factors regarding quality management benefits (quality improvement and customer satisfaction, which lead to market benefits). Han et al. (2009), studying pork processors in eastern China, reach the conclusion that the “soft” TQM elements contribute to overall performance. Alsaleh (2007) focuses on the application of quality tools in the production setups of food processing and manufacturing Saudi companies. The majority of these companies implement quality tools improving all the production stages, from receiving the raw materials to the marketing of the end product.
Research hypotheses
Based on the above theoretical background and the research proposals suggested by many authors, the following research hypotheses are formulated:

RH1. “Soft” and “hard” TQM elements are detected in the quality management systems (QMS) of food companies.

RH2. Quality management benefits regarding customers, employees, society, quality and business performance are detected in food companies.

RH3. The “soft” TQM elements have a significant direct impact on the quality management benefits of food companies.

RH4. The “hard” TQM elements have a significant direct impact on the quality management benefits of food companies.

Research methodology
Questionnaire
In order to test the above research hypotheses, a research project was carried out focusing exclusively on the food sector. Based on the philosophical TQM elements, the quality tools/techniques and the quality management benefits identified in the literature, a questionnaire was designed. In order to improve the composition of the questions, a pilot study was carried out in which data were collected from five quality managers of food companies. The questionnaire was also reviewed by quality management academics. Based on their recommendations the syntax of some questions was corrected. The final version of the questionnaire consists of four parts. The first part contains questions regarding the food companies’ profiles. The second part contains statements regarding a food company’s adoption of the philosophical TQM elements. The third part contains statements regarding the level to which a food company implements the proposed quality tools/techniques. Finally, the fourth part of the questionnaire contains statements regarding the level to which a food company derives quality management benefits with regard to customers, employees, society, quality and business performance. Respondents were asked to indicate the relevance of these statements using a seven-point Likert scale, where 1 represented “strongly disagree” and 7 represented “strongly agree”.

Sample
The criterion for selecting the companies that would participate in the research project was the certification to ISO 9001, because the requirements of this standard are based on quality management principles which are in line with the TQM philosophy. A list of 485 ISO 9001-certified food companies was created based on data collected from the main certification bodies operating in Greece. The questionnaire was distributed to these companies by e-mail. It was requested that the questionnaire be completed by a senior officer/executive in charge of quality management. A useful sample of 90 respondents was used for further study (response rate 18.6 per cent). No statistically significant differences were detected comparing the responding and non-responding companies, in terms of the number of their employees (Mann-Whitney Test). Furthermore, several non-responding companies stated, when contacted, that the major reason for not participating in the research project was lack of time. Thus, it is apparent that non-response bias is not likely to be an issue in the final sample.
Method

EFA is applied in order to extract the latent factors of the TQM elements (first measurement model) and the quality management benefits (second measurement model). The relationships between the extracted latent factors are determined through multiple linear regression analyses. The sample size, the number of the variables used and the ratio of the observations per variables (in each measurement model) are deemed satisfactory, according to Hair et al. (2005), for applying the EFA and multiple linear regression analysis. The statistical package SPSS 17 is used for data processing.

Results

The company profiles

The majority of the participating food companies in the present study are small and medium-sized enterprises (SMEs). More specifically, 81.5 per cent of them employ less than 250 employees, 9.8 per cent between 250 and 500 employees and 8.7 per cent more than 500 employees. A rate of 80.7 per cent of the responding food companies are manufacturers processors, 8 per cent service providers and 11.3 per cent wholesale traders. Moreover, a rate of 67.4 per cent of the food companies had been certified according to ISO 9001:2000 for at least five years, while a rate of 61.5 per cent had also been certified to ISO 9001:1994. However, all the responding food companies have been implementing the ISO 9001:2008 QMS. Furthermore, almost all the responding food companies have been certified according to ISO 22000 and have ample experience in implementing Hazard Analysis of Critical Control Points (HACCP). Finally, only 25 per cent of the responding food companies did not express the wish to further upgrade their QMS towards TQM.

EFA of the TQM elements and quality management benefits

The elements that according to the literature constitute the philosophical aspect of TQM and the quality tools/techniques are used as the basis for the EFA (varimax rotation method). However, in order to guarantee the convergent and discriminant validity, four low loading items (<0.5) with respect to quality tools/techniques are excluded from the subsequent data analysis. The result is the establishment of two latent factors by which TQM is analyzed – the “soft” and the “hard” TQM elements (Table I).

Similarly, the measured items of the quality management benefits identified in the literature are used as the basis for the EFA (varimax rotation method). However, in order to guarantee the convergent and discriminant validity, the low loading items (<0.5) are excluded from the subsequent data analysis (those regarding society benefits). The result is the establishment of four latent factors into which the quality management benefits are refined. These factors are explained based on the measured items’ loadings and are labelled as follows: “improved business performance”, “quality improvement”, “customer satisfaction” and “employee benefits” (Table II).

From Tables I and II it is obvious that all the factor loadings are above 0.6. Hence, the squared multiple correlations are satisfactorily high. In other words, a high amount of measured variable’s variance is explained by a latent factor. The reliability of the latent factors is confirmed, according to Hair et al. (2005), through Cronbach’s \(\alpha \) coefficients (Tables III and IV). The construct validity is confirmed, according to Hair et al. (2005), by evaluating the convergent validity (factor loadings >0.601, average variance extracted >0.427), the discriminant validity (average variance extracted > Corr\(^2\)), (Tables III and IV), the face-content validity (the questionnaire was developed based on an extensive literature review, a pilot study and review by academics) and the
Table II.
“Quality management benefits” – exploratory factor analysis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Improved business performance Factor loadings</th>
<th>Quality improvement</th>
<th>Customer satisfaction</th>
<th>Employee benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market share increase</td>
<td>0.917</td>
<td>0.849</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales increase</td>
<td>0.905</td>
<td>0.771</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competitiveness improvement</td>
<td>0.846</td>
<td>0.768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profit increase</td>
<td>0.836</td>
<td>0.761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance increase</td>
<td>0.742</td>
<td>0.813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste products reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced defects in final products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced defects in semi-final products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-conformities reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer satisfaction increase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased number of customers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer complaints reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company retention of loyal customers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company participation in social activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced rate of employee change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased productivity of employees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced absence without leave</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eigenvalue</td>
<td>8.439</td>
<td>2.362</td>
<td>1.322</td>
<td>1.124</td>
</tr>
<tr>
<td>Cumulative variance (%)</td>
<td>46.88</td>
<td>60.01</td>
<td>67.35</td>
<td>73.59</td>
</tr>
</tbody>
</table>

Notes: 1 represents “strongly disagree” and 7 represents “strongly agree”, \(\text{AVE} = \sum \lambda_i^2/n \) (number of items \(i = 1, \ldots, n \), \(\lambda_i \) = factor loading); \(\text{Corr}^2 \) = the squared correlation between the latent factors.
nomological validity (significant correlations between the latent factors). Based on the mean values of the latent factors (Tables III and IV), it is obvious that the sample food companies adopt the “soft” TQM elements to a high extent, in contrast to the “hard” TQM elements that are implemented to a lesser extent, and that all the quality management benefits are derived to the same high degree.

The impact of the “soft” and “hard” TQM elements on the food companies’ quality management benefits

Having as a dependent variable each of the four latent factors of the quality management benefits, four multiple linear regression analyses are conducted. Based on the sum of the respective measured items, summated scales were calculated for each independent and dependent variable (latent factors) of the regression analyses. Using the standardized and studentized residuals, the assumptions required for each regression analysis were tested and more specifically the linearity, homoscedasticity, independence and normality. Based on the recommendations of Hair et al. (2005), specific tests were carried out for each assumption to check for violations. According to the results, these assumptions are not violated and this is the case for each regression analysis. Finally, the multicollinearity among the independent variables of each regression analysis is checked and not confirmed.

According to the results of the first regression analysis, “quality improvement” is directly affected only by the “soft” TQM elements. The “hard” TQM elements do not directly affect “quality improvement”. The results of the second regression analysis show that “employee benefits” is directly affected by the “soft” TQM elements and “quality improvement”. By contrast, the “hard” TQM elements, do not directly affect “employee benefits”. The results of the third regression analysis show that “customer satisfaction” is directly affected by the “soft” TQM elements and “quality improvement”. By contrast, the “hard” TQM elements and “employee benefits”, do not directly affect “customer satisfaction”. The impact of “employee benefits” on “customer satisfaction” is indirect through the significant correlation between “employee benefits” and “quality improvement” (significant correlation at 0.01 level, coefficient $= 0.561$). Finally, according to the results of the fourth regression analysis, “business performance” is only directly affected by “quality improvement”. By contrast, the “soft” and “hard” TQM elements, “employee benefits” and “customer satisfaction” do not directly affect “business performance”. The impact of these independent variables (excluding the hard aspect of TQM) on “business performance” can be considered as indirect through their significant correlations with “quality improvement” (significant correlations at 0.01 level, coefficients range between 0.5 and 0.61).

Although the “hard” TQM elements have no direct impact on “quality improvement”, “employee benefits”, “customer satisfaction” and “business performance”, the study findings show that the “hard” aspect of TQM has in fact an indirect impact on all the above quality management benefits, through its significant correlation with the “soft” aspect of TQM (significant correlation at 0.01 level, coefficient $= 0.395$).

Discussion

The majority of the food companies participating in the present study are manufacturing SMEs. Fotopoulos et al. (2010) also study ISO 9001-certified Greek food companies, the majority of which are manufacturing SMEs. Moreover, the Greek manufacturing companies in general are SMEs (Panigrakis et al., 2009). Based
on the results of the present study, it is apparent that the small-medium size did not
discourage the Greek food companies from updating their traditional management
systems and moving towards quality-oriented management systems. Not only have
they been implementing the ISO 9001 QMS, including the old and the revised versions,
but they have also been implementing food safety management systems (e.g. HACCP,
ISO 22000). It is worth noting that the sample food companies have ample experience
in quality and safety management systems. This is in line with the findings of Psomas
and Fotopoulos (2010) concerning Greek food companies. Furthermore, the willingness of
the sample food companies to further upgrade their management systems towards total
quality, confirms the notion that this sector can be characterized as “quality” oriented.

Similarly, Alsaleh (2007), studying the Saudi food industry, find signs of a higher
level of quality assurance than expected. Given the enthusiasm of those companies for
attaining internationally recognized quality awards and their willingness to implement
more advanced quality procedures and tools in the future (as is also the case in the
present study), he reaches the conclusion that the future of companies belonging to the
food industry is encouraging. The continuing importance of, and reliance upon, quality
standards, as is shown by the food companies participating in the present study, is also

In exploring quality management in the food companies, the binary character of
TQM is confirmed. The existence of two aspects of TQM – the “soft” and “hard” – is
evident in the QMS of the food companies, thus supporting the first research
hypothesis. Moreover, exploring the nature of the quality management benefits, four
latent factors are revealed, namely quality improvement, employee benefits, customer
satisfaction and improved business performance. Thus, the second research hypothesis
is partly accepted. From the above mentioned benefits, quality improvement and
employee satisfaction concern the internal business environment, while customer
satisfaction concerns the external business environment. Business performance
improvement concerns the external business performance (e.g. market performance) as
well as the internal business environment (e.g. operational performance).

Having analyzed the TQM concept and the quality management benefits, the next
step is to portray, based on the literature, the interrelationships between the “soft” and
“hard” TQM elements and the respective benefits. In doing so, the objective is to
determine the significant relationships between the TQM elements and the benefits
derived (Figure 1). According to the results, two factors significantly and directly
influence the quality management benefits, namely the “soft” TQM elements and
“quality improvement”. However, the role of the “hard” TQM elements should not be
underestimated. They also influence the quality management benefits not directly but
indirectly, through their significant correlation with the “soft” TQM elements. Thus,
the findings support the third research hypothesis, and not the fourth hypothesis. This
may be justified due to the supporting role that the quality tools/techniques have in
improving processes and product quality (Psomas et al., 2011). This is in line with
Oakland’s (2011) statement, according to which controls, systems and techniques are
very important in TQM, but they are not the primary requirement. It is more an
attitude of mind, based on pride in one’s work and teamwork and requires from the
management total commitment, which must then be extended to all employees at all
levels and in all departments.

Psomas and Fotopoulos (2010), studying food companies, find that, in agreement
with the present study, quality management benefits are derived (excluding “employee
benefits”) through implementing TQM practices which partly reflect the “soft”
TQM aspect. Similarly, Han et al. (2009), focusing on the food sector, find that the attention to quality management elements that partly represent the “soft” aspect of TQM, turn out to be critical in deriving two out of four quality management benefits detected in the present study (those regarding customer satisfaction and business performance). The studies mentioned above as well as the present study focus on food companies the majority of which are manufacturing SMEs, however, the present study differs from those studies by focusing on elements that fully depict both aspects of TQM (the “soft” and “hard”).

The results from study of Abdullah et al. (2008) (in electrical/electronic sector) and the present study (in the food sector) are similar. More specifically, the “soft” TQM elements have a significant impact on quality improvement and also a considerable positive effect on employee benefits. Bayazit (2003) state that both the “soft” and “hard” TQM elements are the main factors that contribute to the success of TQM efforts, while in the present study the “hard” aspect of TQM is shown to be indirectly significant. Contrary to the present study that focuses exclusively on food companies the majority of which are SMEs, Bayazit (2003) focuses on large companies belonging to the manufacturing sector in general. However, the findings from both studies regarding the quality management benefits are the same.

Although the study of Santos-Vijande and Alvarez-Gonzalez (2009) focuses on several manufacturing and service firms, contrary to the present study, both studies reach almost the same conclusion. More specifically, based only on the “soft” TQM elements, unlike the present study that is based on both TQM aspects, Santos-Vijande and Alvarez-Gonzalez (2009) reach the conclusion that TQM is adequate for attaining better market-targeted results dismissing any fears of the possible tendency of quality

Notes: nss, Not statistically significant; *,**, statistically significant regression weights in $p=0.001$ and 0.01, respectively

![Figure 1. Relations between the latent factors](image-url)
management to look only inwards (e.g. internal processes improvement). Jung et al. (2009) study multinational manufacturing and service industries from different sectors, contrary to the present study that focuses on a particular sector. The findings from both studies show that the “human resource-based” TQM elements have a stronger influence on the improvement of the internal business performance, than the “technology-based” TQM elements.

Conclusions

Both the “soft” and “hard” TQM elements are detected in the management systems of the food companies. Thus, quality management benefits are derived such as quality improvement, employee benefits, customer satisfaction and improved business performance. According to the framework that was created based on the significant relationships between the TQM elements and the quality management benefits, the optimization of “business performance” is achieved through “quality improvement”. Furthermore, the optimization of “employee benefits” and “customer satisfaction” is achieved through the “soft” TQM elements and “quality improvement”. Finally, “quality improvement” is a factor that is significantly influenced by the “soft” TQM elements. On the other hand, the “hard” TQM elements do not show any direct impact on all the above quality management benefits, they do, however, have an indirect impact, because these TQM elements are strongly correlated with the “soft” TQM elements.

Managers of food companies should realize the importance of the binary character of TQM and more specifically the leading role of the “soft” aspect of TQM and the supporting role of the “hard” aspect in implementing TQM and deriving benefits. A food company operating in an unpredictable crisis dominated in business environment such as Greece, can derive significant quality management benefits through the “soft” and “hard” TQM elements and consequently overcome any difficulty arising from the domestic and international financial market.

This study suffers from some limitations. The small size of the sample of the responding food companies, the diversity of these companies and the subjective character of the data collected are limitations that suggest future research recommendations.

References

About the authors
Dr Evangelos Psomas is a Lecturer at the Department of Business Administration of Food and Agricultural Enterprises in the University of Patras. He received a PhD in Total Quality Management at the University of Ioannina, Greece, in 2008. He has dealt with issues of Management and Marketing and has worked as a Teaching Assistant in the University of Ioannina and Technological Educational Institute of Epirus. His research interests include: total quality management, quality assurance, food safety management, human resource management, supply chain management, agribusiness and food marketing. Dr Evangelos Psomas is the corresponding author and can be contacted at: epsomas@cc.uoi.gr

Dr Fotis Vouzas is an Assistant Professor in the Department of Business Administration in the University of Macedonia, Greece. Studies include BA in Management (Greece), MBA in Management and Organizational Behaviour, MSc in Technology Management (USA) and
Doctorate from the University of Macedonia (Greece). Vouzas is a Senior Researcher at Lancaster University (UK) in part of the European Union Research Project Human Capital and Mobility Programme. Participant in various European Union projects ADAPT, TEMPUS specialised in TQM-related issues. Current research interests on TQM-HR relationship, quality assurance, logistics, business excellence and managerial effectiveness. Research work published on domestic and international journals and in a collective book.

Dr Dimitrios Kafetzopoulos is a Research Assistant in the Department of Business Administration of Food and Agricultural Enterprises in the University of Patras. His research interests include: quality management, quality assurance, food safety management.